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Abstract. The three-dimensional bimodal random-field Ising model is investigated using the N-fold version
of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed
critical minimum energy subspace technique, and two implementations of this scheme are utilized. The
random fields are obtained from a bimodal discrete (±∆) distribution, and we study the model for various
values of the disorder strength ∆, ∆ = 0.5, 1, 1.5 and 2, on cubic lattices with linear sizes L = 4–24.
We extract information for the probability distributions of the specific heat peaks over samples of random
fields. This permits us to obtain the phase diagram and present the finite-size behavior of the specific
heat. The question of saturation of the specific heat is re-examined and it is shown that the open problem
of universality for the random-field Ising model is strongly influenced by the lack of self-averaging of the
model. This property appears to be substantially depended on the disorder strength.

PACS. 05.50+q Lattice theory and statistics (Ising, Potts. etc.) – 64.60.Fr Equilibrium properties near
critical points, critical exponents – 75.10.Nr Spin-glass and other random models

1 Introduction

The random-field Ising model (RFIM) [1] is one of the
most studied glassy magnetic models [2–5], mainly be-
cause of its interest as a simple frustrated system. The
Hamiltonian of the system is:

H = −J
∑

<i,j>

SiSj −
∑

i

hiSi, (1)

where the Si = ±1 are Ising spins, J is the interaction
energy between nearest neighbors, which we take to be
positive so that the model is ferromagnetic and hi are the
random fields (RF’s). In this paper the values hi are taken
from a bimodal distribution of the form:

P (hi) =
1
2
δ(hi − ∆) +

1
2
δ(hi + ∆), (2)

with ∆ the disorder strength, also called randomness of
the system. Various different RF probability distributions
have been studied in the past [6–9], such as the Gaus-
sian distribution, the wide bimodal distribution (with a
Gaussian width), and the bimodal distribution considered
also here.

In spite of many years of study, the critical behavior
of the three-dimensional (3D) RFIM has been a matter of
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several debates and is still controversial. One of the early
disagreements was the question of whether the model un-
dergoes a phase transition from a high temperature para-
magnetic phase to a low temperature ferromagnetic one,
for some range of the randomness ∆. The work of Parisi
and Sourlas [10] introduced the notion of dimensional re-
duction, indicating that the critical behavior of the RFIM
in d dimensions, at sufficiently low randomness, should be
identical to that of the well-known normal Ising model in
d − 2 dimensions. This in turn indicated that the model
should not exhibit a phase transition in 3D or fewer. How-
ever, a different argument based on the droplet theory of
domain wall energies in the ferromagnetic state [11], sug-
gested that a phase transition should exist in 3D for finite
temperature and randomness. The whole puzzle has been
largely cleared out by Imbrie [12] and Bricmont and Kupi-
ainen [13], who showed the existence of an ordered phase.
Their arguments strongly supported the view that a phase
transition in 3D exists, provided that the randomness is
sufficiently small (∆c � 2.3).

However, agreement over several fundamental issues is
missing and the characterization of the phase transition is
still unclear [14]. Despite the fact that most studies sug-
gest a second-order transition [14–19], there are also in-
dications of first-order or hybrid-order transition [14,20].
Note also that the mean field theory [21] differentiates be-
tween a binary and a continuous randomness distribution,
predicting for the former a tricritical point at which the
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transition becomes of the first-order, at high fields. How-
ever, it is now generally accepted that a new fixed point
controls the behavior of RF ferromagnets [22,23]. The sig-
nificance of this for the RFIM (in d > 2) is that this new
zero temperature random fixed point controls the whole
critical line (Tc(∆)) and that the RF’s are always relevant.
For disordered systems with weak randomness which cou-
ples to the local energy (such as random-site impurity or
random-bond models) the crossover to a new random fixed
point, depends on the Harris criterion [23,24]. According
to this, the disorder is relevant if the correlation length
exponent of the pure model (ν = νpure) satisfies the con-
dition dν < 2 and this condition may be stated, with the
help of the hyper-scaling relation (α = 2 − dν), as α > 0.
Since the specific heat exponent of the 3D Ising model is
positive, weak disorder should be expected to be relevant.
In the case of the RFIM the type of disorder is much
more severe, since the randomness couples to the local
order-parameter and the crossover renormalization group
eigenvalue is always positive [23]. The inequality ν ≥ 2/d,
derived by Chayes et al. [22] for the correlation length
exponent of a generic disordered system (ν = νrandom)
would imply, using again hyper-scaling, a negative spe-
cific heat exponent (α < 0). However, it is believed that
hyper-scaling is violated in the RFIM and the specific heat
exponent α is related to ν by a modified hyper-scaling law
2 − α = (d − θ)ν, where the exponent θ characterizes the
scaling of the stiffness of the ordered phase at the critical
point. Thus, the specific heat exponent of the RFIM is not
restricted, by the above theoretical considerations, to be
negative [22].

A general sketch of the phase diagram of the RFIM
is given in several papers [6,8,25] and will be also pre-
sented here in Section 3.3. At low temperatures and mod-
erate values of randomness, the system is assumed to be
in an ordered ferromagnetic phase, whereas in the oppo-
site regime the system is paramagnetic. From the notions
of the perturbative renormalization group (PRG) it is ex-
pected that the RF is the relevant perturbation at the
pure (∆ = 0) fixed point, and that the RF fixed point is at
T = 0. However, it is known that PRG fails for the RFIM
and that a theoretical justification of universality for this
and also other disordered systems is lacking [2,3,9,10].
Questions concerning the general characterization of the
phase transition, the existence of an intermediate glassy
phase [25–27], the behavior of the renormalization group
flow in the middle of the phase diagram [25], and the de-
pendence of the critical exponents on the randomness dis-
tribution and disorder strength are still open [7,9,28].

A relevant active and enigmatic issue concerns the be-
havior of the specific heat (see Ref. [29] and references
therein). The specific heat of the RFIM can be experi-
mentally measured and is of considerable theoretical in-
terest. There is a strong disagreement in literature about
the possible divergence or saturation of the specific heat.
In studies supporting the scenario of saturation there is
a discrepancy in the reported negative values of the crit-
ical exponent α. Some of these later studies find strongly
negative values, ranging from α = −1.5 [31] to α =

−0.5 [6,14,32]. In particular, Hartmann and Young [6]
recently found by a ground state technique the value
α = −0.63 ± 0.07, whereas Middleton and Fisher [33],
using the same technique, estimated in marked disagree-
ment α = −0.01± 0.09.

From the experimental point of view, a true realiza-
tion of the RFIM is hardly conceived. However, it has
been shown that dilute antiferromagnets in uniform ex-
ternal field (DAFF) represent physical realizations of the
RFIM [34] and a number of experiments investigated the
phase transitions of such 3D systems [36]. These experi-
ments have proven to be very difficult and their interpreta-
tion doubtful due to the extremely slow, glassy dynamics
of the system. Experiments on DAFF, provided evidence
of a second-order phase transition and a logarithmic singu-
larity for the specific heat [38]. Note that recently, Barber
and Belanger [39] in their Monte Carlo study of a DAFF
model reported also that their specific heat curve closely
mimics a logarithmic peak. Their results are based on a
large lattice (L = 128) but instead of sample averaging
they have observed the behavior of only a few RF real-
izations. On the other hand, there is also experimental
evidence [40] supporting the opposite view of a cusp-like
singularity of the specific heat, in agreement with a sat-
urating specific heat (α < 0) as found in the studies of
references [14,31].

It has been pointed out that a strongly negative value
of α causes serious difficulties with respect to the Rush-
brooke relation: α + 2β + γ ≥ 2 [6,14,32,33]. Therefore,
there have been several attempts [6,15–17,41] in order to
find a consistent set of scaling relations to describe the
critical behavior of the RFIM. Among the several scal-
ing scenarios proposed [9,26–28,32,33], the single second-
order critical point behavior characterized by three scaling
exponents [33] seems to be consistent with a close to zero
estimate for the specific heat exponent. Thus, the above
described conflicting situation in literature concerning the
divergence or saturation of the specific heat is one of the
open important issues, whose implications on the critical
behavior of the model are not understood.

The first step towards its resolution was taken recently
by the present authors [29,30], where an extended nu-
merical investigation of the 3D bimodal (∆ = 2) RFIM
revealed the importance of the property of lack of self-
averaging of the specific heat of the model, as well as the
possibility of large-L crossover phenomena in the scaling
behavior of the specific heat of the model. Here, we ex-
tend our analysis for the values ∆ = 0.5, 1 and 1.5 of
the disorder strength below the critical value ∆c in order
to obtain a more comprehensive picture. To this end, we
implement recently developed efficient Monte Carlo meth-
ods that directly calculate the density of states (DOS)
of a classical statistical model. A brief overview of the
numerical techniques used in the past for the RFIM are
presented in the next section, together with the neces-
sary details of the methods used in our approach. The
utilization of our recently proposed critical minimum en-
ergy subspace (CrMES) scheme [42] to the RFIM is also
explained. In Section 3 the new numerical results for the
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cases ∆ = 0.5, 1 and ∆ = 1.5 are given and the phase
diagram of the model is reproduced. The universality as-
pects of the model are discussed and found to support the
scenario of violation of universality. Our conclusions are
summarized in Section 4.

2 Numerical techniques

There are two distinct kinds of numerical approaches for
the RFIM. In the first approach, traditional Monte Carlo
methods are used to simulate the properties of the system
at finite temperatures [14,18,31,32,39,43–45]. The second
approach is grounded on the well-known belief that the
critical behavior of the model is governed by the non triv-
ial RF fixed point at T = 0 [33,46]. In this case, graph the-
oretical algorithms [7,47] are used to calculate the ground
states of the system for a sample of RF’s at different disor-
der strength. Using this later approach quite large lattices
have been studied: L ≤ 80 [7,46], L ≤ 90 [9], L ≤ 96 [6]
and finally L ≤ 256 [33]. Yet, in the traditional Monte
Carlo approach the sizes studied were restricted to the
size L ≤ 16 [8,14,31], L ≤ 20 [32] and finally we may re-
fer, as an exception, to the case L = 128 in the study of
reference [39] for particular RF’s as mentioned in the in-
troduction. From the T = 0 numerical studies one obtains
an accurate estimate of the critical randomness and from
the finite temperature studies further information for the
phase diagram may be derived. From the finite tempera-
ture approach one can also find, by extrapolation, a crude
estimate for the critical randomness [8] (see Sect. 3). It
is worth noting that quite recently Wu and Machta, com-
bining finite and zero temperature studies of the RFIM,
reported strong correlations of ground states and thermal
states near the critical line for given realizations of the
disorder, supporting strongly the T = 0 fixed point sce-
nario [48].

In traditional Monte Carlo studies of the
RFIM [8,14,18,31,32] the system is simulated in a
restricted range of temperatures, appropriate for the
location of the pseudocritical temperatures. However,
single spin-flip methods, such as the Metropolis or the
heat bath algorithms, face severe slowing down problems
of equilibration and temperature averaging since the
characteristic times may be exponentially large at low
temperatures (T < Tc), as explained in reference [8].
Moreover, the sample averaging process introduces new
characteristic features and requires further computer
resources. Indeed, the appropriate pseudocritical temper-
ature for the RFIM is a strongly fluctuating quantity [29],
and this property amplifies the computer time require-
ments for its location. Hence, depending on the size of
the lattice and the disorder strength, it is necessary to
simulate the system for each RF realization in a quite
wide temperature range, which is not even known in
advance. To obtain a good approximation of the locations
of the specific heat peaks, the temperature step must be
chosen sufficiently small for, otherwise any interpolation
scheme may miss the correct height of a possible sharp

peak. In fact, this situation of a possible sharp peak,
turns out for a significant number of RF’s [29].

From the above discussion one should wonder whether
the traditional Metropolis sampling could be trusted to
provide even a moderate estimation plan, since it re-
quires immense computer resources and faces all men-
tioned problems. The cluster flipping algorithm for the
RFIM proposed by Dotsenko, Selke and Talapov [49] is
a straightforward extension of the Wolff algorithm [50],
devised to overcome the slowing down effect and speed
up the flip dynamics. A more efficient form of this algo-
rithm, the limited cluster flip (LCF) algorithm, has been
invented by Newman and Barkema [8] and was used for the
study of the Gaussian RFIM. Furthermore, these authors
have combined the LCF algorithm with the generalized
histogram method of Ferrenberg and Swendsen [51] which
is a re-weighting scheme, using a restricted set of temper-
ature measurements. This combination may be hopefully
more reliable for the location of the pseudocritical tem-
peratures. Finally, a new cluster technique, that combines
the replica-exchange method of Swendsen and Wang [52]
and the two-replica cluster method [53], was implemented
by Machta, Newman, and Chayes [54] where single real-
izations of the disorder strength were studied for sizes up
to L = 243.

Here, we employ a different strategy which utilizes the
new and popular methods of efficient estimation of spec-
tral degeneracies of classical statistical models [44,51,55–
62] and the recently developed CrMES technique [42]. This
scheme has the merit of locating the pseudocritical tem-
peratures by determining the DOS in the proper energy
subspace by using simple algorithms in a unified imple-
mentation. Moreover, it avoids all the above problems,
speeding up the simulations. Specifically, we use the multi-
range Wang-Landau (WL) algorithm [59], and its N -fold
version as presented by Schulz et al. [60]. The accuracy
of this scheme was discussed in reference [29], where more
details than those given below for the appropriate imple-
mentations can be found.

2.1 The Wang-Landau algorithm

For the application of the WL algorithm in a multi-range
approach we follow the description of Schulz et al. [60], i.e.,
whenever the energy range is restricted we use the updat-
ing scheme 2 in that paper. Consider the restriction of the
random walk in a particular energy range I = [E1, E2]
and assume that the random walk is at the border of the
range I. Then, the next spin-flip attempt is determined
by the modified Metropolis acceptance ratio:

A =
{

min{1, G(E)/G(E + ∆E)}, (E + ∆E) ∈ I
0, (E + ∆E) �∈ I

, (3)

the random walk is not allowed to move outside of the
energy range, and we always increment the histogram
H(E) → H(E) + 1 and the DOS G(E) → G(E) ∗ fj

after a spin-flip trial. Here, of course, fj is the value of the
WL modification factor f [59] at the jth iteration, in the
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process (f → f1/2) of reducing its value to 1, where the
detailed balance condition is satisfied. In all our simula-
tions the WL modification or control parameter takes the
initial value: fj=1 = e ≈ 2.71828.... When starting a new
iteration the control parameter is changed according to
fj+1 =

√
fj, j = 1, 2, . . . , 20 [59]. For the histogram flat-

ness criterion, we use a flatness level 0.05, as in previous
studies [42,55].

2.2 The N-fold version of the Wang-Landau algorithm

For the bimodal RFIM is convenient to use an index n
to characterize directly the corresponding energy changes
produced by the spin-flip process. The number of differ-
ent classes for the N -fold version n = 1, ...,N depends
on the value of the disorder strength ∆. For example,
consider the case ∆ = 1. The possible energy changes
are ∆En = ±14, ±10, ±6 and ±2, and using an in-
dex n = 1, 2, ..., 8 corresponding to 8 classes we can write
∆En = −14+(n−1)·4. Note that, the RF value at the site
in which the spin-flip is going to take place is also affecting
the energy change. Denoting the populations of spins by
Nn,

∑
n Nn = N , where N is the number of sites: N = L3,

the selection probability of a class, Pn, will be propor-
tional to this number multiplied by the corresponding ac-
ceptance ratio. For the application of the algorithm in
multi-range approach we follow the description of Schulz
et al. [60] for the N -fold version of the WL method. If the
system is in a spin state with energy E ∈ I and after the
spin-flip is in a state with energy E′ = E + ∆En, the se-
lection of the class for the next spin-flip is obtained from
the following [55]:

Pn = NnAn; An =
{

min{1, G(E)/G(E′)}, E′ ∈ I
0, E′ �∈ I

. (4)

The average life time of a state, reflecting the number of
attempts we expect the system to remain in its current
state before moving to the new state, is ∆t = W/Z [60]
where:

W =
∑

n

Pn. (5)

The rest of details for the algorithms can be found in the
original papers [55,60].

2.3 Implementation of the CrMES technique

The CrMES scheme [42] uses only a small part (Ẽ−, Ẽ+)
of the energy space (Emin, Emax) to determine the spe-
cific heat peaks. If Ẽ is the value of energy producing the
maximum term in the partition function at the tempera-
ture of interest (say the pseudocritical temperature), the

sums are restricted as follows:

CL(Ẽ−, Ẽ+) = N−1T−2

⎧
⎨

⎩Z̃−1

Ẽ+∑

Ẽ−

E2 exp [Φ̃(E)]

−
⎛

⎝Z̃−1

Ẽ+∑

Ẽ−

E exp [Φ̃(E)]

⎞

⎠
2
⎫
⎪⎬

⎪⎭
(6)

and

Φ̃(E) = [S(E)−βE]−
[
S(Ẽ) − βẼ

]
; Z̃ =

Ẽ+∑

Ẽ−

exp [Φ̃(E)],

(7)
where (Ẽ−, Ẽ+) is the minimum dominant subspace sat-
isfying the following accuracy criterion:

∣∣∣∣∣
CL(Ẽ−, Ẽ+)

CL(Emin, Emax)
− 1

∣∣∣∣∣ ≤ r. (8)

In this paper we have used the accuracy criterion r =
10−4, which is extremely demanding compared to the rel-
ative errors produced in the specific heat, say by the WL
method. It is also a very strict criterion for the present
model, in view of the existing very large sample-to-sample
fluctuations of the specific heat. A practical algorithmic
approach for specifying the CrMES is fully described in
reference [42]. We may satisfy the specific heat accuracy
criteria defined in equation (8) for any particular realiza-
tion of the RF, by restricting the WL random walk in the
corresponding critical energy subspace.

This restriction greatly facilitates our simulations
without introducing additional errors. Since we don’t
know in advance the CrMES for a specific realization of
the RF we have two alternatives. The first option is to use
an efficient prognostic method of identifying the CrMES
for any particular realization of the RF by using the first
stages of the WL method. For instance, one may try to
estimate the CrMES from the first 12 iterations in the
process of reducing the WL modification factor f . To im-
plement safely this option, one should be careful to use
for the rest of WL iterations a much wider energy range
than that predicted in the first 12 iterations. The second
option is to ‘guess’ (by using some convenient extrapo-
lation method) a broad energy subspace that will cover
the overlap of the CrMES for all RF’s in the sample. Im-
plementing the second method is straightforward and has
the advantage that the approximation for the specific heat
curve of a particular RF realization is accurate in a wide
temperature range including the pseudocritical tempera-
ture corresponding to the particular RF. This option (the
second) was used for the cases ∆ = 0.5 and 1, whereas
for ∆ = 1.5 (and 2 [29]) both options were used, each for
50% of the simulations (for a more detailed discussion see
Ref. [29]).
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3 Results and analysis

3.1 Definitions and the property of self-averaging

For a disordered system we have to perform two distinct
kinds of averaging. Firstly, for each RF realization the
usual thermal average has to be carried out and secondly
we have to average over the distribution of the random
parameters. In effect, this means that we must gener-
ate and study quite large samples of RF’s. Following the
methods outlined in Section 2.3 the thermal average for
the specific heat is given by the approximations (6)–(8).
Using large samples of RF’s we can estimate the rele-
vant probability distributions of the location of the spe-
cific heat peaks. Let Cm(T ) denote the specific heat of a
particular realization m in a sample of M realizations of
the RF (m = 1, 2, ..., M). The pseudocritical temperature
T ∗

L(Cm(T )) depends on the realization of the RF and for
large values of the randomness ∆, is a strongly fluctuat-
ing quantity [29]. Let us also denote the locations of the
specific heat peaks by (C∗

m, T ∗
L,m). It seems that, in all

previous studies [6,14,31], the averaging process over an
ensemble of RF’s was carried out on the curve of the aver-
aged specific heat, without raising the question of whether
this averaged curve is the proper statistical representative
of the system. The peak of this averaged curve was then
analyzed by using finite-size scaling relations. On the other
hand, the work of Barber and Belanger [39], in which the
behavior was observed for particular RF realizations, is
a different route but it would be hard to accept this as
an adequate alternative. A particular RF is not generally
representative of the behavior of a large sample of RF’s.

Indeed, in previous papers [6,14,31,32] the following
average has been considered for the specific heat:

[C]av =
1
M

M∑

m=1

Cm(T ) (9)

and the finite-size scaling behavior of the peak of this
averaged curve has been studied, by assuming that the
maximum [C]∗av = maxT {[C]av} and the corresponding
pseudocritical temperature obey the scaling laws:

[C]∗av
∼= p + cLα/ν ; T ∗

L([C]av) ∼= Tc + bL−1/ν, (10)

where α and ν are considered to be the specific heat and
correlation length critical exponents, respectively. Note
that, these averaged curves are very sensitive to the prop-
erty of lack of self-averaging (see the discussion below)
due to the fact that the corresponding thermodynamic
quantities are characterized by broad distributions in the
thermodynamic limit [29].

It is clear that when studying random systems the only
meaningful objects for investigating the finite-size scaling
behavior are the distributions of various properties in en-
sembles of several realizations of the randomness. Hence,
it is important to be able to ascertain to what extent are
the results obtained from an ensemble of random realiza-
tions representative of the general class to which the sys-
tem belongs. The answer hinges on the important issue

Fig. 1. L-dependence of the ratio RC∗
m

defined in equation (11)
for ∆ = 0.5, 1 and 1.5. The inset illustrates the variation of
RC∗

m
as a function of the disorder strength ∆, including the

value for the case ∆ = 2 [29].

of self-averaging. In a self-averaging system, a single very
large system suffices to represent the ensemble; without
self-averaging, a measurement performed in a single sam-
ple, no matter how large, does not give a meaningful result
and must be repeated on many samples. In a Monte Carlo
study of a self-averaging disordered system the number
of samples needed to obtain the average [Q] (e.g., Q can
be the energy, magnetization, specific heat, or susceptibil-
ity) to a given relative accuracy decreases with increas-
ing L. On the other hand, in a non self-averaging system,
the number of samples that must be simulated rises very
strongly with L. If a quantity is not self-averaging, then
we talk about lack of self-averaging and as explained the
process of increasing L does not improve the statistics.
In other words, the sample-to-sample fluctuations remain
large. The problem of self-averaging in the RFIM has been
a matter of investigation over the last years [29,30,63]. A
common measure characterizing the self-averaging prop-
erty of a system based on the theory of finite-size scaling
has been discussed by Binder [64] and has been used for
the study of some random systems [65,66]. This measure
inspects the behavior of a normalized square width quan-
tity, defined as:

RQ =
VQ

[Q]2
, (11)

where VQ = [Q2]−[Q]2 is the sample-to-sample variance of
the average [Q]. Here, Q is used in respect of the specific
heat C∗

m. According to the literature [64–66] when the
ratio RQ tends to a constant, the system is said to be
non self-averaging and the corresponding distribution (say
P (Q)) does not become sharp in the thermodynamic limit.

In reference [29] it has been shown that the specific
heat of the bimodal RFIM for the case ∆ = 2 is charac-
terized by the property of lack of self-averaging (see inset
of Fig. 4 in Ref. [29]). In analogy with the case ∆ = 2 of
reference [29], we construct the ratio RC∗

m
for the cases

∆ = 0.5, 1 and 1.5 and plot the results in Figure 1. The
data presented for the cases ∆ = 0.5 and 1 are taken from
1000 samples of RF’s for L ≤ 10 and 400 for L = 14–24,
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while for the case ∆ = 1.5 the samples of RF’s used were:
1000 for L ≤ 12 and 300 for L = 12–24.

From Figure 1 we observe that for small values of the
randomness ∆ the ratio RC∗

m
has values close to zero. In

particular, for ∆ = 0.5 the ratio RC∗
m

shows a rather faint
dependence on L and is practically very close to zero. For
this case, and possibly for even weaker RFs, it appears
that RC∗

m
→ 0 and the property of self-averaging may be

well obeyed. However, we know from our previous study
for ∆ = 2 that the above property is strongly violated, at
the same lattice sizes, and that RC∗

m
→ 0.3 [29]. Thus, for

strong disorder the behavior appears very different and
the development of the increasing influence of the ran-
domness ∆ on the ratio RC∗

m
can be seen in Figure 1 and

in particular from the corresponding inset. For the lattice
sizes studied here (L = 4–24) the ratio RC∗

m
for the cases

∆ ≥ 1 seems to increase with the lattice size and the es-
timated non-zero limiting values for ∆ = 1 and 1.5 are
RC∗

m
→ 0.016 and RC∗

m
→ 0.12, respectively. However,

the behavior of the specific heat is notoriously difficult
even in simple pure models [64], and for the present model
the already existing conflicting situation is an additional
warning against drawing definite conclusions at these lat-
tice sizes. It is quite possible that we are not yet in the
regime of large enough L, where simple scaling laws would
be expected to hold. For the case ∆ = 2 we have already
observed [29] that the system appears to crossover and
change behavior for sizes L > 32 and we have suggested
in that paper that the finite-size study should be extended
to at least L = 80 in order to have a more convincing pic-
ture. For the strengths studied here, ∆ = 0.5, 1 and 1.5,
we suspect that even much larger sizes would be needed in
order to draw definite conclusions for the true asymptotic
behavior.

There are several cases in the literature where the char-
acterization of a phase transition demands very large lin-
ear sizes and the picture obtained from moderate sizes
is completely misleading. A characteristic example is the
5-state 2D Potts model, for which Landau [67] suggested
that the expected first-order behavior would not be clar-
ified from finite-size data up to sizes L = 2000. In a dif-
ferent inquiry Hilfer et al. [68] estimated that the asymp-
totic behavior of the tail regime of the universal order-
parameter distribution for the 2D Ising model would re-
quire sizes of the order of L ≥ 105. Thus, having to
deal with the controversial 3D RFIM, for which even
the existence a tricritical point at high fields is not yet
clarified [69], we prefer to regard the observed in Fig-
ure 1 strong violation of the self-averaging property as a
rather tentative conclusion which has to be further verified
by studying larger systems and more physical properties
(such as the magnetic susceptibility [30]).

Since all past finite temperature studies were at-
tempted on small and moderate sizes (L ≤ 20), it is valu-
able to examine the implications of the strong violation
of the self-averaging property at these moderate sizes. In
our opinion the inconsistent estimations in the literature
have, at least partly, their origin on such an unconven-
tional behavior of the RFIM. In order, to observe better

Fig. 2. Finite-size behavior of [C∗
m]av and [C]∗av for ∆ = 0.5.

The solid and dotted lines correspond to logarithmic fits for
[C∗

m]av and [C]∗av , respectively.

these implications we proceed to study, in addition to the
above scaling laws, the sample averages of the individual
specific heat maxima and pseudocritical temperatures de-
fined by:

[C∗
m]av ≡ 1

M

∑

m

C∗
m

∼= p̃ + c̃Lα̃/ν̃ ;

[T ∗
L,m]av ≡ 1

M

∑

m

T ∗
L,m

∼= T̃c + b̃L−1/ν̃. (12)

The mean values defined above characterize the corre-
sponding probability distributions and consist a different
kind of representative of the samples of RF’s. To quan-
tify the sample-to-sample variations of the specific heat
peaks we use the standard deviation of C∗

m over a sam-
ple of m = 1, 2, ..., M RF realizations, VC∗

m
. This is the

parameter of equation (11) and Figure 1 and will be also
illustrated in the following figures as error bars. However,
it should not be in any case confused with the statistical
errors resulting from the thermal average approximations
of equations (6) and (7).

3.2 Scaling behavior of the specific heat

Let us start by presenting in Figure 2 the finite-size be-
havior of the peaks of the sample average [C∗

m]av and that
of the averaged curve [C]∗av, for the case ∆ = 0.5. The
number of RF realizations is M = 1000 for L ≤ 10 and
M = 400 for L = 12–24. The difference between the be-
havior of the peaks of the averaged curve [C]∗av and that of
the sample average [C∗

m]av does not emerge for small val-
ues of the lattice size L. Only for L > 16 is the sample-to-
sample fluctuation considerable and seems to differentiate,
although mildly, between the two averages. Noteworthy
that, in this case the standard deviation of the sample-to-
sample fluctuations is significantly smaller than the aver-
age [C∗

m]av: VC∗
m

� [C]∗av < [C∗
m]av. Based on the data

L = 6–24, no sign of saturation for both [C∗
m]av and [C]∗av
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Fig. 3. Finite-size behavior of [C∗
m]av and [C]∗av for ∆ = 1. The

solid and dotted lines correspond to power law fits for [C∗
m]av

and [C]∗av , respectively. Both quantities saturate, however with
different exponents.

is observed, and one would be tempted to predict a mildly
diverging behavior. In fact the best fits, corresponding to
the smallest value of χ2 per degree of freedom, predict a
logarithmic behavior of the form [C∗

m]av = 0.844(3) · ln L
and [C]∗av = 0.834(4) · ln L, respectively. Note that, the fit
for [C∗

m]av has a smaller value of χ2 per degree of freedom
than that of the fit for [C]∗av. Attempting a power law for
[C∗

m]av we find a diverging behavior with a much larger
value of χ2 per degree of freedom.

Next, we consider the intermediate case where the ran-
domness takes the value ∆ = 1. Figure 3 shows again
the finite-size behavior of the peaks of the sample average
[C∗

m]av and that of the averaged curve [C]∗av. In this case
we apply power law fits of the form: [C]∗av = p + cLw

and [C∗
m]av = p̃ + c̃Lw̃, as the one proposed in equa-

tions (10) and (12), using the same number of RF real-
izations as in the case ∆ = 0.5. These fits yield saturation
laws for both cases [C∗

m]av and [C]∗av, predicting however
different saturation values 4.15(65) and 2.88(13), respec-
tively. Specifically, the relevant fits of comparable χ2 quan-
tity, give: (p̃, c̃, w̃) = (4.15(65),−4.68(44),−0.31(9)) and
(p, c, w) = (2.88(13),−3.56(64),−0.51(56)). From these,
we could even speculate that the saturation of both quan-
tities takes place with different exponents: w̃ = −0.31 and
w = −0.51. This value of w corresponding to the peaks of
the averaged curve [C]∗av compares very well to the value
−0.5 of reference [31] for the ratio h/T = 0.25 of their
study (h is used for the disorder strength in Ref. [31]).
Using our approximate phase diagram (see below Fig. 6),
we find that their case closely corresponds to the case
∆ = 1 studied here. However, the values of the exponents
estimated from the fits can not be taken seriously, since
this analysis does not account for the systematic problem
that at least part of the data are not yet in the regime
of large enough L, where finite-size scaling without cor-
rections holds. Note that, the standard deviation of the
sample-to-sample fluctuations in this case is also smaller
than [C∗

m]av, that is VC∗
m

< [C]∗av < [C∗
m]av, but not as

small as in the case ∆ = 0.5.

Fig. 4. The same as in Figure 3, but for ∆ = 1.5. The clear
and early saturation of [C]∗av is similar to that of the case
∆ = 2 [29]. The diverging power law behavior of [C∗

m]av shown
by the solid line gives an exponent w̃ = 0.44(7).

Finally we treat the case ∆ = 1.5. Figure 4 illustrates
the finite-size behavior of the peaks of the sample average
[C∗

m]av and that of the averaged curve [C]∗av. The data
presented here are taken from samples of M = 1000 RF’s
for L ≤ 12 and M = 300 for L = 14 − 24. The satura-
tion of the peaks for the averaged curve is quite obvious
and is attained, as in the case ∆ = 2 [29], already in
the small L-regime. Furthermore, the behavior of the av-
erage [C∗

m]av looks similar with that of the case ∆ = 2
for L ≤ 24, and despite the fact that there are no signs
of saturation of this quantity for these lattice sizes, the
possibility of crossing over to a final saturation for larger
lattice sizes can not be excluded. It is worth noting that,
as in the case ∆ = 2, the standard deviation of the sample-
to-sample fluctuations seems to obey the same behavior
with that of [C∗

m]av, since VC∗
m

∼ 2([C∗
m]av − [C]∗av) and

[C]∗av � 1.48. Our power law fitting attempts predict for
[C∗

m]av a diverging behavior with p̃ = −0.21(3), c̃ = 0.7(2),
and w̃ = 0.44(7). Meanwhile, the averaged curve [C]∗av

strongly saturates with p = 1.48(2), c = −5.15(1.6)
and an exponent w = −1.69(24), already from the small
L-regime. The saturation exponent of the averaged curve
w = α/ν = −1.69(24) should be compared to the value
w = α/ν = −1.1(4) given in reference [31] for h/T = 0.5,
which now corresponds approximately to our ∆ = 1.5 case
(see Fig. 6).

Comparing the behavior of [C∗
m]av for the cases ∆ = 1

and ∆ = 1.5, one may discern a conflicting picture, in
a sense that while w̃ is negative for ∆ = 1 — indicat-
ing a strong saturation — the same exponent turns out
to be positive — indicating a rather strong divergence —
for ∆ = 1.5. We believe though, that this is not a sur-
prise. In fact, the blowing up of the property of lack of
self-averaging in the range ∆ = 1–1.5, as illustrated in the
inset of Figure 1, may be behind this behavior. A possi-
ble saturation in the asymptotic limit may occur in both
cases but this may happen via different complex routes be-
cause of the unsettled and (∆, L)-sensitive self-averaging
property of the system. On the other hand, the quantity
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Fig. 5. Size dependence of pseudocritical temperatures for var-
ious values of ∆, including the case ∆ = 0 of the normal cubic
Ising model [42], and the case ∆ = 2 [29].

Fig. 6. The phase diagram based on the data of Table 1 and
equation (13). The dotted line separates the ferromagnetic (F)
from the paramagnetic (P) phase. The estimated critical value
∆c of the disorder strength, above which no phase transition
occurs, is ∆c = 2.42 ± 0.12.

[C]∗av is very weakly L-depended in the large L-regime
and its early saturation to a value (that depends on the
disorder strength), leaves no room for an accurate estima-
tion of its behavior since the statistical errors dominate
in the large L-regime. This fact, when combined with the
possible crossover behavior of the system at quite large
linear sizes, larger than those corresponding to the above
discussed saturation, lead us to suggest that scaling at-
tempts on [C]∗av, including previous studies, should not
be trusted.

3.3 Phase diagram and universality aspects

In Figure 5 we present the size dependence of the pseudo-
critical temperatures for all values of randomness studied.
We have included the case of the normal cubic Ising model,
for which the numerical data of reference [42] have been
used, and the case ∆ = 2 [29], using results up to L = 24,

Table 1. Critical temperatures and exponents for various val-
ues of ∆, including the case ∆ = 0 of the pure Ising model [42],
and the case ∆ = 2 [29].

∆ T̃c b̃ ν̃
0 4.51153 –3.96(14) 0.66(6)

0.5 4.380(3) –4.12(51) 0.57(24)
1 3.949(19) 1.40(83) 0.95(28)

1.5 3.001(13) 1.85(48) 1.86(34)
2 1.63(19) 2.28(8) 2.55(49)

where our numerical scheme is accurate. The results of the
power law fittings applied (see Eq. (12)) are presented in
Table 1. From Table 1 it is obvious that there is a strong
dependence of the shift exponent (1/ν̃) on the value of
the disorder strength. While, for relatively small values
of the disorder strength ∆ the shifting of the pseudocrit-
ical temperatures follows that of the normal Ising model,
for larger values of ∆ the exponent ν̃ shows an intense
variation, indicating a possible violation of universality,
in agreement with the results of Sourlas [9]. In fact, it
is known that the only theoretical arguments supporting
the existence of universality classes in random systems are
based on PRG theory and these arguments have been in-
tensively called into questioned for the case of the RFIM.
Equivalent studies of universality violations have been re-
ported also in other glassy systems [70], reenforcing the
view that the concept of universality in complex systems
is not fully clarified and that more work needs to be done
towards this direction.

Based on the data of Table 1, we give in Figure 6 an
approximation of the phase diagram of the model which is
comparable with the ones given in the literature (see i.e.
Refs. [8,25]). The dotted line shows a power law fit of the
form:

Tc = p + q∆r, (13)

with p = 4.5114(20), q = −0.59(3), and r = 2.29(6). The
value of p is very close to the value of the critical temper-
ature of the normal 3D Ising model (Tc ≈ 4.51153), ap-
proving to a certain extent our fitting choice. The above
power law ansantz for the phase diagram Tc = Tc(∆)
has a clear physical motivation, which could be com-
pared with various functions considered in the past [8,
54]. The critical value of the randomness is estimated to
be ∆c = 2.42±0.18, close to the value 2.3±0.2 of Newman
and Barkema [8] and the value 2.35 of Ogielski [18]. To get
a better estimate for ∆c the system should be simulated
for larger values of ∆ close enough to the critical value.

4 Concluding remarks

The numerical route utilized here for the study of the
RFIM consisted of the application of the multi-range WL
algorithm [59] in its N -fold version [60], implemented
within the CrMES scheme [42]. We hope that the pre-
sented combination of algorithms and techniques will be
useful in further numerical studies of this and other simi-
larly challenging problems, such as spin glasses.
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Our analysis showed that, in general, the behavior of
the mean [C∗

m]av is distinct from that of [C]∗av and that
this is a result of the lack of self-averaging, a property
that varies strongly with the disorder strength and the
lattice sizes considered. For sufficiently small values of
randomness ∆, [C∗

m]av and [C]∗av seem to obey a mildly
diverging behavior, showing no signs of saturation. Mov-
ing to the intermediate range (∆ = 1), both quantities
saturate, but with different exponents. Yet, this area of
the phase diagram of the RFIM is not fully understood.
Theoretical studies based on the replica formalism predict
the existence of an intermediate glassy-like phase which is
characterized by a breaking of replica symmetry near the
transition temperature [5]. However, the interpretation of
these results is not clear, and understanding may be sim-
pler under the prism of a strong and complex variation
of the property of lack of self-averaging. For large values
of randomness, say ∆ = 1.5, the peak of the averaged
specific heat curve [C]∗av obeys a strong saturation law
which is attained already in the small L-regime, in agree-
ment with our previous findings for an even larger value
of the disorder strength (case ∆ = 2 [29]). But as men-
tioned earlier the corresponding scaling attempts would be
hardly trusted. In the same range of the disorder strength,
the behavior of the sample mean [C∗

m]av is somewhat sur-
prising, showing no signs of saturation, and its behavior
seems to follow the large sample-to-sample fluctuations
developed by the blowing up of the property of the lack of
self-averaging. Apparently, the blowing up of the property
of lack of self-averaging in the case ∆ = 1.5 is responsible
for this behavior, shifting a possible saturation to larger
values of L. Provided that our previous analysis for the
case ∆ = 2 [29] recorded a ‘final and unexpected’ saturat-
ing behavior of the sample average [C∗

m]av for L > 32, it
will be interesting to observe whether this behavior pre-
vails for larger lattice sizes, even in cases of small values
of randomness.

Turning to the shift behavior of the pseudocritical tem-
peratures of the model, we found a very strong dependence
of the shift exponent on the disorder strength, reinforcing
the scenario of universality violation. The shift for small
values of ∆ appears to follow the direction of the pure
case (∆ = 0) of shifting to Tc(∆) from below and this
is reflected in the negative sign of the parameter b̃. For
large values of ∆, the power law exponent ν̃ shows a very
strong variation, which may be due to the existence of ad-
ditional leading and non-leading correction terms [9]. In
order to support numerically the concept of universality
for the exponent ν̃ one should have accurate data for very
large lattices, as has been pointed out also in previous
works dealing with the concept of universality in random
systems [9]. In conclusion, we argue that the complexity
of the self-averaging property for the RFIM may be the
main source behind most controversies, and we therefore
call attention to the need for studying larger systems.

This research was supported by EPEAEK/PYTHAGORAS
under Grant No. 70/3/7357.
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